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OBJECTIFS DU THEME

1. Se donner des outils de base qui servent dans diverses circonstances

® Ces outils sont des opérations qu’on effectue sur une image
Ces outils seront réutilis€s dans les chapitres suivants

Certains de ces outils sont des rappels de IMN117 et IMN359...
Pourquoi?
Augmenter la qualité visuelle
Améliorer les résultats d’une application autre
¢ Prétraitement
Types de dégradations
Origines materielles
¢ bruit, flou, support
Origine logicielle : introduite par un traitement
¢ ¢chantillonnage, quantification, compression ...
Origine seémantique : info superflue ayant un sens mais nuisant au traitement

¢ mouvement, ombrage, éclairage, ...

IMN259 Analyse d’images
©Marie-Flavie Auclair-Fortier




PLAN
1. Opérations ponctuelles

2. Histogramme
3. Transformations géométriques
4. Bruit

4.1. Rapport signal sur bruit

5. Opérations inter-images
5.1. Vidéo et détection de mouvements



3. Transformations geometriques
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Transformations geometriques

Jusqu’a présent, nous nous sommes concentré sur des procédes ayant pour but de
modifier la distribution des niveaux de gris/couleurs de I’1mage. Dans cette sous-
section, nous porterons notre attention sur des procédés ayant pour but de modifier

la distribution spatiale des pixels.
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Transformation de base:

Transformations geometriques

Rotation

e ,
Tmanslation 4 7 o ement (Shear)

Changement

d’échelle § /
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Transformations geometriques

Transformations « artistiques » (le « warping »):

Twirl
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Transformations geometriques

1- transformation spatiale;
2- mterpolation de niveaux de gris.
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Toute transformation geometrique est constituée de deux opérations de base:
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Transformations geometriques

1- transformation spatiale;
2- mterpolation de niveaux de gris.

I cosO —-sin01[i

&_

Il
1 \‘

|
T

sin®  cosB

Ay + j

Toute transformation geométrique est constituée de deux opérations de base:
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Transformations geometriques

Rotation

O positif = sens anti-horaire
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Transformations geometriques

Rotation

Il =rCoS
p.-{ ¢

J=rsing

O positif = sens anti-horaire
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Transformations geometriques

Rotation

J=rsing

Il =rCoS
p.-{ ¢

(i'=rcos(¢p +0 )

=rcosp cosO —rsin¢ sinO

| =icosB - jsin6
O positif = sens anti-horaire N j'=rsin(¢p+0)

=rcosQ sin0 +rsind cosO

=is5in0 + jcosO




a

Transformations geometriques

Rotation

O positif = sens anti-horaire

i’ cosO —sin@|[i
J' | sin®  cosH j

{i =7rcos
P:
J=rsing
(i'=rcos(¢p +0 )
=rcosp cosO —rsin¢ sinO
=icos0 — jsin0
j'=rsin(¢p +0 )
=rcosQ sin0 +rsind cosO

=is5in0 + jcosO
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Transformations geometriques

Toute transformation géométrique est constituee de deux opérations de base:

1- transformation spatiale;
2- mterpolation de niveaux de gris/couleur.

Wave
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Transformations geometriques

Transformation spatiale directe




a

Transformations geometriques

Transformation spatiale directe

fx.y) f'xy)

*-0--0-0- o-0--0-90-9

(i,j)+__+__¢:_ I I I I

- e e e

Sl S A S ¢ ¢ ¢+
-0 0-9o-9 -0 0-0-0
o-0-6-6-o o-0-6-6-9

(1',]")

Contrairement a ce que I’intuition commande, la transformation spatiale directe est

Exemple: changement d’échelle d’un facteur 5.

JOLD) = f7(5.1)
f(2.01)—= f'(10.1)

A EVITER. Pourquoi? Car elle peut laisser des trous béants dans 1’image de sortie 1.
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Transformations geometriques

Transformation spatiale inverse

Jx.y) 1y
A A
SHBS: SHBS:

S e @R

LT e

o-6-6-6-9 o-6-6-6-9
(7.7")
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Transformations geometriques

Transformation spatiale inverse

Jx.y) 1y
A A
SHBS: SHBS:

I = e @R
LD e
o-6-6-6-9 o-6-6-6-9

(1',]")

De cette facon, on pose la question suivante :

« Quelle est la couleur du pixel (i°,j’)? Réponse: c’est f(i,j)! »




4 N
Transformations geometriques

Transformation spatiale inverse

f(xy) f(xy)
YUY Y ? YUY Y ?
$od-o 4o BB
e e SRR A
e e s Ses
o-6-6-0-9 o -6-0-0-0

(1',]")

De cette facon, on pose la question suivante :

« Quelle est la couleur du pixel (i°,j’)? Réponse: c’est f(i,j)! »

Grace a cette méthode, on évite les trous. Toutefois, le pixel (i,j) possede rarement
des coordonnées entieres. Par exemple, que faire lorsque (i’,j’) pointe vers

1(20.2,44.9)?

Je connais f(20,44), {(21,44), 1(20,45) et f(21,45) mais pas f(20.2, 44.9).

N "
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Transformations geometriques

Transformation spatiale inverse

1- transformation spatiale;
2- interpolation de niveaux de gris.

Parmi les [trés] nombreuses méthodes d’interpolation, trois sont fréquemment
sollicitées en imagerie.

A. Le pixel le plus preés

fxy) fxy)
YT Y YT Y
R R S
44 o -0-0-o-o o o o -o-0

I I I ] | I | I

O A
O o e TEe-b-d
I I I I I | I | I

46 & -b- -6 o -6--0-6-0
19 20 21 22 (i',j")

(i,7)=(20.244.9)— (20,45)

Solution simple mais qui induit des imprecisions.

.
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Transformations geometriques

Transformation spatiale inverse

1- transformation spatiale;
2- interpolation de niveaux de gris.

B. Interpolation linéaire (si1 (7,j) tombe entre deux pixels)

fx.y) f'xy)
Y Y
43 & -0--0-0-9¢ ¢-0--¢-90-9
44 o -0--0-o-o o -0 -0-0-o
eSS TTTT———
4> 61600 r-e-e MRS A
46 & -0- -6 - - o -0--6-0-9
19 20 21 22 (i',j")
| | JOLj)=finj)i,=i)+ f(i)j)i=i;)

i)V i) Vi)
== @0 = O — T i)=(20245)

| | £(20.2,45)~ £(20,45)x 0.8+ £(21,45)x0.2

_ | ' <
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Transformations geometriques

Transformation spatiale inverse
1- transformation spatiale;
2- interpolation de niveaux de gris.

C. Interpolation bilinéaire (s1 (i,j) tombe entre quatre pixels)

f(xy) fxy)
o-o o oo *-e--0-e-9
43 ?‘ #‘_‘_? ‘? ¢ ?"#“?“?‘ﬁ
oo ale s bogtoeed
o ieia s SRER
46 & -0--@ - @& - ® o -0--0-0-90
19 20 21 22 (i',j")
i )
g |
i, _’ _‘ _____ @ — S g )= (i, j )iy =)+ f(iy i )(i-1i;)
l | S J2 )= (i o) =1)+ f(iy, j,)(i=i;)
jL—e ' o
. [ | JLJ)=FL ) Ja=J)+ (LI )(F—J1)
K J2 _,' = = === ® - 15 /
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Transformation spatiale inverse
1- transformation spatiale;

Transformations geometriques

2- interpolation de niveaux de gris.

fx.y)

ABCD 1234

f'xy)

Plus proche voisin Interpolation bilinéaire




Une autre transformation gecometrique :

le changement d’¢chelle
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Transformations geometriques

AxM

Changement d’échelle [M,] =
AyN

(image resizing) N

Dans le cas d’un changement d’échelle, le pixel destination (i,j) ne possede
pas la méme taille que le pixel d’origine (i',j°).

Lorsque Ax Ay =/ une interpolation bilinéaire marche bien.

fxy) fxy
2 —_—
L)
(i'J) (i.j)
(0,0) (0,0)
(1,0) (0.5,0)
(2,0) (1,0)
(1,1) |(0.50.5)

™

ou M, N est la dimension de I'itmage.
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Transformations geometriques

0.5M"
0.5N'

Changement d’échelle [M }

: .. ou M,N est la dimension de I'image.
(image resizing) N

fx.y)
0 1 2
0
0 3 b C

_a+b+d+e

A=

\_ 4
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Transformations geometriques

AxM

Changement d’échelle [M,] =
AyN

(image resizing) N

Dans le cas d’un changement de résolution, le pixel destination (7,j) ne possede
pas la méme taille que le pixel d’origine (i’,j’).

Par contre, lorsque 0 < Ax,Ay <1 il nous faut trouver une autre méthode.

fxy) fxy)

o3

Pourquoi une autre méthode? Voici un exemple.

™

ou M, N est la dimension de I'itmage.
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Transformations geometriques

™

& M 2M'
C.hangemept. d’cchelle = ou M,N est la dimension de 1'image.
(image resizing) N 2N
(i'j) (i,j)
(0,0) (0,0)
. . (1,0) (2,0)
La fagon la plus simple est de prendre le voisin le plus proche. 2.0) 4.0)

2 |l mfn|o|p|q]|T
| m 0
3 |s |t u v |w]|X
4| Y|z| @ Bl x| O
y o
sl el oy m|lv] o 2




" Transformations geometriques

™

(M’ 0.5M . . .
) = ou M,N est la dimension de I'image.

Changement d’échelle N'| 05N
(image resizing) ‘M1 T2M
La facon la plus simple est de prendre le voisin le plus proche.

(i'j) (1))

(0,0) (0,0)

(1,0) (2,0)

(2,0) (4,0)




Changement d’échelle
(image resizing)

N!

A

" Transformations geometriques

| fosy

0.5N
2M'
2N’

La facon la plus simple est de prendre le voisin le plus proche.

(i) (i.j)
(0,0) (0,0)
(1,0) (2,0)

(2,0)

(4,0)

\

] ou M, N est la dimension de I'i'mage.

Aliassing
(Moire¢)

"




" Transformations geometriques h

M’ 0.5M . . .
) | = ou M,N est la dimension de I'image.

Changement d’échelle N 05N
(image resizing) ‘M1 [2M'
Ax,Ay = 0.5 N]=[2N'}
La facon la plus simple est de prendre le voisin le plus proche.

(i) (i.j)

(0,0) (0,0)

(1,0) (2,0)

(2,0) (4,0)

Les pixels aux coordonnées impaires dans f(x,y) ne sont pas sollicités. Une telle approche

L e . ] ]
porte le nom de « décimation » lorsque Ar=L et Ay=L ouP.REN"

P R

J(x.y) > (%)

2




Transformations geometriques O

M’ 0.5M , , ,
= ou M,N est la dimension de 1'image.
Changement d’échelle N '] [0'5 N }
(image resizing) M [2M
Ax,Ay = 0.5 N]_[M'}

En fait, lorsque Ax,Ay = 0.5 un pixel (i’,j’) couvre quatre pixels dans f{x,y)
J(x.y) /'(xy)

o)

Par consequent, lorsque () < Ax, Ay <1

f’(x,y) = Moyenne des pixels couverts par (x,)) dans f(x,y)




Changement d’échelle
(image resizing)

M’ [0.5M
N’] } [0.51\7
M1 [2M

N] ) [21\1']

J(x.y)

L

plus proche voisin

fxy)

Transformations géométriques

En fait, lorsque Ay, Ay = (.80 pixel (i’j’) couvre quatre pixels dans f(x,))

moyenne

\

] ou M,N est la dimension de I'image.




M ’] - [O.5M
Changement d’échelle :N 0.oN
(image resizing) M _[2M

_N 2N’

* )

J(x.y)

plus proche voisin

Transformations géométriques

\

] ou M,N est la dimension de I'image.

fxy)

En fait, lorsque Ay, Ay = (.80 pixel (i’j’) couvre quatre pixels dans f(x,))

moyenne

Outils mathématiques
et d’analyses avancés
pour améliorer le
résultat!

(IMN764)

s/
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Changement d’échelle

1

Lorsque Ax=— et Ay=—

P

des pixels couverts par (x,y) » est de filtrer f(x,y) par un filtre passe-bas et de

decimer I’image filtrée.

1
R

J(x.y)

S

Transformations geometriques

ou P,REN™ une facon simple de calculer « la moyenne

(f*h)(xy)

PR |

> f'(xy)
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Transformations geometriques

Changement d’échelle
/ 1 ‘ + .
Lorsque Ax = > et Ay = » ou P,REN" une fagon simple de calculer « la moyenne

des pixels couverts par (x,y) » est de filtrer f(x,y) par un filtre passe-bas et de
decimer I’image filtrée.

().

J(x.y)

PR \ - (%))

Les deux filtres les plus couramment utilise€s sont les filtres:

1
M de taille : X
oyenneur de taille A Ay
- > , 1 1
e Gaussien d’¢écart typeest: g =—— , 0, =——0
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Transformations geometriques

Changement de résolution

1 1

Lorsque Ax = > et Ay = N ou P,REN" une facon simple de calculer « la moyenne

des pixels couverts par (x,y) » est de filtrer f(x,y) par un filtre passe-bas et de
decimer I’image filtrée.

fx.y) f'xy)

plus proche voisin  Filtre moyenneur Filtre gaussien

Ax=Ay =0.25




/

\_

Outils mathématiques
et d’analyses avancés
pour améliorer le

résultat! Ax=Ay=0.25

(IMN764)

Transformations geometriques

Changement de résolution
1 1

Lorsque Ax = > et Av=— ouP,REN" une facon simple de calculer « la moyenne

R

des pixels couverts par (x,y) » est de filtrer f(x,y) par un filtre passe-bas et de

decimer I’image filtrée.

fxy)

plus proche voisin

Ax=Ay=0.5

\

fxy)

Filtre moyenneur Filtre gaussien




PLAN
1. Opérations ponctuelles

2. Histogramme
3. Transformations géométriques
4. Bruit

4.1. Rapport signal sur bruit

5. Opérations inter-images
5.1. Vidéo et détection de mouvements



é N

Le bruit dans une 1image, c’est quoi1?

Ici, bruit Gaussien
(moyenne 0 et écart type 0.2)

Demo 03

Images originales

+ n(x.y)

(0, 0.2, img.shape) g(xy) = f(xy) + nxy)

\ 2(x,y) a €té obtenue en additionnant un bruit n(x,y) non corrélé et de moyenne nulle. 29 /
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Opcrations inter-images.

Réduction du bruit par moyennage

Image originale

Image corrompue par
du bruit numérique

fx.y) gxy)

gixy) =fxy) + nxy)

2(x,y) a ét¢ obtenue en additionnant un bruit n(x,y) non corrélé et

de movenne nulle.

30
Gonzalez-Woods




4 N
Rapport signal sur bruit (SNR) en pratique

Demo 03

mean of signal

SNR =

std of noise

SNR=1/0.2
=35




4 N
Rapport signal sur bruit (SNR) en pratique

Demo 03

mean of signal

SNR =

std of noise

SNR=1/0.2
=35

mean( S )
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Rapport signal sur bruit (SNR) en pratique

Demo 03

mean of signal

NR =
SR std of noise
SNR =1/0.2
-
mean( S )
std( fond )
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Estimation du SNR
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Estimation du SNR
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Estimation du SNR

std( fond )
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Estimation du SNR

mean( S )

std( fond )
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Estimation du SNR

mean( S )

SNR = mean(S)/std( fond)

std( fond )




-

Estimation du SNR

Potenticllement plusieurs
S 1ntéressants
dans lequel 1l faut
rapporter le SNR

mean( S )

SNR = mean(S)/std( fond)

std( fond )
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Opcrations inter-images.

Réduction du bruit par moyennage

Image originale

Image corrompue par
du bruit numérique

fx.y) gxy)

gixy) =fxy) + nxy)

Si la lentille peut prendre plusieurs images (toujours avec un bruit non corréle
et de moyenne nulle) alors on peut réduire le bruit en additionnant ces images

entre elles :

] N
g*(x,y)=ﬁi=2gi(x,y)

33
Gonzalez-Woods




4 N

Opcrations inter-images. .
Réduction du bruit par moyennage

Image corrompue par
Image originale du bruit numérique

Gonzalez-Woods

J(x.y)

N=2 N=§ N=16

Ratio signal sur bruit : g)_ JN g Donc, pour N=64, le bruit dans g est réduit d’un facteur §.

N T




Moyenner plusieurs image ensemble

On peut augmenter le ratio signal sur bruit d’une image en
moyennant plusieurs images gi(x,y) dont le contenu est toujours le meéme (f(x,)))
plus ou moins du bruit blanc additif.

gi(x,y) = f(x,y) + n(x,y)

|

Bruit blanc additif



Moyenner plusieurs image ensemble

On peut augmenter le ratio signal sur bruit d’'une 1image en
moyennant plusieurs images gi(x,y) dont le contenu est toujours le méme (f(x,y))
plus ou moins du bruit blanc additif.

gi(x,y) = f(x,y) + n(x,y)

|

Bruit blanc additif



Moyenner plusieurs image ensemble

On peut augmenter le ratio signal sur bruit d’'une 1image en
moyennant plusieurs images gi(x,y) dont le contenu est toujours le méme (f(x,y))
plus ou moins du bruit blanc additif.

gi(x,y) = f(x,y) + n(x,y)

|

Bruit blanc additif



Moyenner plusieurs image ensemble

On peut augmenter le ratio signal sur bruit d’une 1mage en
moyennant plusieurs images gi(x,y) dont le contenu est toujours le méme (f(x,)))
plus ou moins du bruit blanc additif.

gi(x,y) = f(x,y) + n(x,y)

|

Bruit blanc additif



Moyenner plusieurs image ensemble

On peut augmenter le ratio signal sur bruit d’une 1mage en
moyennant plusieurs images gi(x,y) dont le contenu est toujours le meéme (f(x,)))
plus ou moins du bruit blanc additif.

) = ) + o) N moyennes augmente le SNR

T d’'un facteur?

Bruit blanc additif



Moyenner plusieurs image ensemble

On peut augmenter le ratio signal sur bruit d’une 1mage en
moyennant plusieurs images gi(x,y) dont le contenu est toujours le meéme (f(x,)))
plus ou moins du bruit blanc additif.

) = ) + o) N moyennes augmente le SNR

T d’un facteur? \/N

Bruit blanc additif



Moyenner plusieurs image ensemble

On peut augmenter le ratio signal sur bruit d’une 1mage en
moyennant plusieurs images gi(x,y) dont le contenu est toujours le meéme (f(x,)))
plus ou moins du bruit blanc additif.

gi(x,y) = f(x,y) + n(x,y)

|

Bruit blanc additif

N moyennes augmente le SNR

d’'un facteur? /N

TP 02



Moyenner plusieurs image ensemble

On peut augmenter le ratio signal sur bruit d’une image en
moyennant plusieurs images gi(x,y) dont le contenu est toujours le meéme (f(x,)))
plus ou moins du bruit blanc additif.

Reasoning

» Let the clean signal be constant with mean p,.
« Each noisy image has noise with standard deviation o,.

« When you average N independent noisy images:
On

VN

because the variance of the mean of IN independent samples is reduced by IV, so the standard deviation

reduces by v V.

» The signal mean stays the same ().

average noise std =

e So:

SNRave = o 7\;N = /1 Z_:, B \/N°SNR€ingle



Moyenner plusieurs image ensemble

On peut augmenter le ratio signal sur bruit d’une image en
moyennant plusieurs images gi(x,y) dont le contenu est toujours le meéme (f(x,)))
plus ou moins du bruit blanc additif.

Reasoning

» Let the clean signal be constant with mean p,.
« Each noisy image has noise with standard deviation o,.

« When you average N independent noisy images:
On

VN

because the variance of the mean of IN independent samples is reduced by IV, so the standard deviation

reduces by v V.

» The signal mean stays the same ().

average noise std =

e So:

SNRave = o 7\;N = /1 Z_:, B \/N°SNR€ingle

TP 02



Type de bruait




Bruit

g(xy) = fixy) + nx.y)

T

Bruit additif non corrélé

Espace de Fourier




Bruit

En général, le bruit est blanc, c-a-d que sa distribution fréquentielle est globalement uniforme

Bruit blanc (1)

g(xy) =f(xy) +nxy)

Bruit additif non corrélé

o0,

38




Bruit

Mais 1l existe plusieurs autres types de bruits additifs

Bruit rose Espace de Fourier

39




Bruit

Mais 1l existe plusieurs autres types de bruits additifs

Bruit rose Espace de Fourier

Bruit bleu
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| N
Bruait

La « couleur » du bruit indique sa distribution spectrale.
Demo 03

Pour une « couleur » de bruit, il peut exister plusieurs types de distributions spatiales.

Une variable de bruit « z » est considérée comme ¢étant une variable aléatoire suivant une densité de probabilités

plz)|

. 1 = |
Bruit uniforme p( Z) = VCZ = Z =< b f Uniform

b—a




a

Bruit

La « couleur » du bruit indique sa distribution spectrale.

Pour une « couleur » de bruit, il peut exister plusieurs types de distributions spatiales.

™

Demo 03

Une variable de bruit « z » est considérée comme ¢étant une variable aléatoire suivant une densité de probabilités

1

Bruit uniforme p( Z) =— Va=<sz

b—a

Bruit gaussien

p(2)]

|

Sb f'>—uz

Uniform

I

h

Graussian

0 ot < /




4 N

Bruit

Gamma

b—

b_b-l
p(z)=?bi1)e_az Vz=0

Bruit gamma

0.607 / b
Bruit de Rayleigh : —
) ayleigh
2(z-a) -E2-
p(z) = (T)e b VZ =a

Bruit exponentiel p( Z) = qge ¥ Vz=0

.




a

Demo 03

Bruit

1
b—a

Va<sz<b

Bruit poivre et sel p( Z) =

Exemple de bruit sur une image composee de 3 régions uniformes

Image d’origine non bruitcée

o

™

Impulse
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Gamma

Gaussian

Ravleigh

~

OJ
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Exponential
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Uniform

Salt & Pepper
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BRUIT, CONTRASTE, CONTOUR DANS UNE IMAGE

* Une image

IMN259 Analyse d’images
Source : ©Marie-Flavie Auclair-Fortier
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BRUIT, CONTRASTE, CONTOUR DANS UNE IMAGE

* Distinguer le contraste de la nettete

niveau de gris

>

position en x

IMN259 Analyse d’images

| Source : DIP2 ©Marie-Flavie Auclair-Fortier
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BRUIT, CONTRASTE, CONTOUR DANS UNE IMAGE

* Distinguer le contraste de la nettete

niveau de gris

Contraste

>

position en x
— Nettete =

IMN259 Analyse d’images

| Source : DIP2 ©Marie-Flavie Auclair-Fortier




BRUIT, CONTRASTE, CONTOUR DANS UNE IMAGE

* Distinguer le contraste de la nettete

S1 un contour est flou, c’est parce que sa zone de transition entre les niveaux de gris est grande
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On augmente la netteté
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0

IMN259 Analyse d’images
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BRUIT, CONTRASTE, CONTOUR DANS UNE IMAGE

* Distinguer le contraste de la nettete

S1 un contour est peu contraste, c’est parce les niveaux de gris d’un coté et de I’autre du contour sont proches
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BRUIT, CONTRASTE, CONTOUR DANS UNE IMAGE

* Distinguer le contraste de la nettete

S1 un contour est peu contraste, c’est parce les niveaux de gris d’un coté et de I’autre du contour sont proches
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BRUIT, CONTRASTE, CONTOUR DANS UNE IMAGE

% Distinguer le bruit

S1 un contour est bruité, c’est parce des variations de n.g. surviennent dans les régions constantes
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% Distinguer le bruit
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BRUIT, CONTRASTE, CONTOUR DANS UNE IMAGE

% Distinguer le bruit

Un contour tres bruite, peu contrasté et flou est difficile a localiser
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BRUIT, CONTRASTE, CONTOUR DANS UNE IMAGE

% Distinguer le bruit

Un contour tres bruite, peu contrasté et flou est difficile a localiser
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Metriques de qualite
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Evaluation subjective de la qualite

[’ objectif 1c1 est de créer une mesure de qualité qui sera aussi fiable qu’un €tre humain.
Pour ce faire, on doit d’abord s’intéresser a I’évaluation subjective de la qualité
c’est-a-dire comprendre de fagon empirique comment un €tre humain juge de la

qualité d’une 1mage.

ﬁ'—

..\Qp\[‘ AN

1

Figure 1 — Conditions d’évaluation de la qualité

K Crédit : Charrier, Larabi et Saadane/
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Evaluation subjective de la qualité

L’objectif ici est de créer une mesure de qualité qui sera aussi fiable qu’un étre humain.
Pour ce faire, on doit d’abord s’intéresser a I’évaluation subjective de la qualité c’est-a-dire
comprendre de fagon empirique comment un étre humain juge de la qualité¢ d’une image.

Environnement normalisé e T

Standards ISO 3664 et ITU-R 500-10

( ]
e Distance d’environ 1 metre a I’écran ﬁ

* Angle d’observation d’environ 30 degres Figure 1 — Conditions d évaluation de la qualité
 Ecran de haute qualité de 22 a 26 pouces

e Ecran calibré (white balance, correction gamma, etc.)
* Chromacité de I’arriere plan = illuminant D65

(D65 -> centre du diagramme de chromacite)

* Sources de lumiere D65

» Aucune lumicre dans le champ visuel de I’observateur
* Aucune lumicre devant refléter 1’écran

Figure 2 — Exemple de salle d’évaluation

Crédit : Charrier, Larabi et Saadane/




Evaluation subjective de la qualité

Séance d’évaluation

» Séance d’au plus 30 minutes

 Le score des 15-20 premieres images doit €tre ignoré car tout observateur « stabilise » son
opinion au debut de la s€ance

* Au moins 15 observateurs.

* Les observateurs doivent avoir un appareil visuel normal

Figure 4: Test d Ishihara.
Crédit : Charrier, Larabi et Saadane/
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Evaluation subjective de la qualité

Tests

On peut faire des tests comparatifs et des tests de mesure absolue. Les tests comparatifs sont
genéralement plus souvent retenus

56
Crédit : Charrier, Larabi et Saadane
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Evaluation subjective de la qualité

Tests

On peut faire des tests comparatifs et des tests de mesure absolue. Les tests comparatifs sont

geénéralement plus souvent retenus

Tests comparatifs : ordonner les images de la meilleure a la moins bonne

Figure 5 : Test d’ordonnancement.

Artéfacts de compression

56
Crédit : Charrier, Larabi et Saadan

\

.
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Evaluation subjective de la qualité

Tests

On peut faire des tests comparatifs et des tests de mesure absolue. Les tests comparatifs sont
geénéralement plus souvent retenus

Tests comparatifs : ordonner les images de la meilleure a la moins bonne

Artéfacts de compression

Figure 5 : Test d’ordonnancement. 56 /
€

Crédit : Charrier, Larabi et Saadan
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Evaluation subjective de la qualité

Tests

On peut faire des tests comparatifs et des tests de mesure absolue. Les tests comparatifs sont
geénéralement plus souvent retenus

Tests 2 a 2: Comparer I’1tmage d’origine a sa version dégradée

Aulin fix|me) x|y " ul Gn/al s \u|as Gxine iz, "5 Gxal)s

= S S D G e e oo mmoaa e E [ —— ik g
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Artefacts de compression
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Evaluation subjective de la qualité

Tests

™

On peut faire des tests comparatifs et des tests de mesure absolue. Les tests comparatifs sont

genéralement plus souvent retenus

Tests 2 a 2: Comparer I’1tmage d’origine a sa version dégradée

Echelle a cinq notes

Qualiteé Dégradation

Excellente Imperceptible

Bonne Perceptible mais non génant
Assez bonne [Leégerement génant
Mediocre .. Geénant
Mauvaise | Tres génant




Evaluation subjective de la qualité

Tests

™

On peut faire des tests comparatifs et des tests de mesure absolue. Les tests comparatifs sont

genéralement plus souvent retenus

Tests 2 a 2: Comparer I’1tmage d’origine a sa version dégradée

Echelle a cinq notes

Qualite Dégradation

Excellente ’ Imperceptible

Bonne Perceptible mais non génant
Assez bonne [Leégerement génant
Mediocre .. Geénant
Mauvaise | Tres génant

MOS (mean opinion score)

1 N
u, =— Eu
Jk ifk
N “~

Ou Uy est la note de I’observateur i pour la dégradation j de I’image k. N est le nombre d’observateurs

v




Evaluation subjective de la qualité

Tests

™

On peut faire des tests comparatifs et des tests de mesure absolue. Les tests comparatifs sont

genéralement plus souvent retenus

Test de mesure absolue : Donner une note de 1 a 5 a une image dégradée

Echelle a cinq notes

Qualite Dégradation

Excellente ’ Imperceptible

Bonne Perceptible mais non génant
Assez bonne [Leégerement génant
Mediocre .. Geénant
Mauvaise | Tres génant

MOS (mean opinion score)
1 N

Jjk ifk
N <«

Ou Ui est la note de 1’observateur i pour la dégradation j de I’image k. N est le nombre d’observateurs

c
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Metriques de qualite

Le but est de trouver une métrique de qualité qui saura imiter le MOS. Les métriques
de mesure absolue sont relativement rares, souvent complexe et vont au-dela du cadre
de ce cours. Les métriques les plus fréquentes sont les métriques d’évaluation 2 a 2.

Erreur quadratique moyenne (mean square error)
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Metriques de qualite

Le but est de trouver une métrique de qualité qui saura imiter le MOS. Les métriques
de mesure absolue sont relativement rares, souvent complexe et vont au-dela du cadre
de ce cours. Les métriques les plus fréquentes sont les métriques d’évaluation 2 a 2.

Erreur quadratique moyenne (mean square error)

Ratio signal sur bruit (signal to noise ratio)

Pf
SNR(f,g) =10log

Pf—g

A
Z(f(yi,j)—g(i,j))z
| Ef(i /)

Ef )-8, )

=10log

=20log
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Metriques de qualite

PSNR(f,g) = lOlog(

ou d est la valeur maximale du signal (ici 255)

Une metrique beaucoup plus souvent utilisée est le PSNR.

Ratio signal sur bruit impulsionnel (Peak signal to noise ratio)

d2

MSE(f,g)

|




Me¢etriques de qualite

Une metrique de qualité est une fonction qui mesure la qualité visuelle d’une image. Ainsi
plus une image est dégradée par du flou, du bruit ou des artifacts de compression (e.g. JPEG)
plus la qualité sera faible.

Qualite faible Qualité bonne Qualité excellente

"/




Me¢etriques de qualite

Les métriques de qualite sont souvent utilis€ées pour evaluer les meéthodes de débruitage et de déconvolution

Exemple :

Par conséquent la méthode 1
est meilleure que la méthode 2

MSSIM sera défini dans les diapos
plus loin

Image débruitée par la méthode 1 Image débruitée par la méthode 2 03




Me¢etriques de qualite

Les métriques de qualite sont souvent utilis€ées pour evaluer les meéthodes de débruitage et de déconvolution

Exemple :

Par conséquent la méthode 1
est meilleure que la méthode 2

MSSIM sera défini dans les diapos
plus loin

63

Image débruitée par la méthode 1 Image débruitée par la méthode 2




Me¢etriques de qualite

Les métriques de qualite sont souvent utilis€ées pour evaluer les meéthodes de débruitage et de déconvolution

Exemple :

Par conséquent la méthode 1
est meilleure que la méthode 2

MSSIM sera défini dans les diapos
plus loin

63

Image débruitée par la méthode 1 Image débruitée par la méthode 2
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Me¢etriques de qualite

Les métriques de qualite sont souvent utilis€ées pour evaluer les meéthodes de débruitage et de déconvolution

Exemple :

Image d’origine f

—— — 7 ————

MSSIM (f, f;) > MSSIM (f, f,)

Par conséquent la méthode 1
est meilleure que la méthode 2

MSSIM sera défini dans les diapos
plus loin

k Image débruitée par la méthode 1 Image débruitée par la méthode 2 03 /




Metriques de qualite

Le probleme avec MSE, SNR et PSNR est qu’une legere modification d’une 1image, parfois
meéme 1mperceptible par I’ce1ll humain, peut avoir un effet majeur sur ces metriques. Par consé-
quent, d’autres métriques ont ét¢ proposes. Parmi les plus utilisées sont

UQI (Universal Quality Index)
SSIM (Structural SIMilarity)

Z Wang, A Bovik, A Universal Image Quality Index, IEEE Signal Processing Letters, 13(4), 2002

Z Wang, A Bovik, H. Sheikh, E. Simoncelli Image Quality Assessment: From Error Visibility to Structural

Similarity, IEEE TIP, 13(4), 2004 /
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Metriques de qualite

UQI- u,,u, :moyennedes images f ct g
o ,,0, :ccart—typedesimages f ct g

. 1
O ,, :covariance — E (fl — U Xgi. — U )
/g nm 4 j ARASE g

O Mt
I TR R

\Z Wang, A Bovik, A Universal Image Quality Index, IEEE Signal Processing Letters, 13(4), 2002
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Metriques de qualite

UQI:

Les auteurs précisent qu’il est préférable d’utiliser une version locale de UQI:

UQI(f.8) = Y UQI(f.g,)

O\

\ Z Wang, A Bovik, A Universal Image Quality Index, IEEE Signal Processing Letters, 13(4), 2002

u
f,,g,: estle contenu de I'image a I'intérieur de la j-eme petite fenétre (par exemple 11x11)




@ QI meilleure que MSE

(Images dégradees ayant la méme MSE)

MSE : 225
Image originale UQI: 0.937

MSE : 225 MSE : 225
UQI : 0.34 UQI : 0.29

\_

MSE : 225 MSE : 225
UQI : 0.989 UQI : 0.64

MSE : 225 MSE : 225
UQI : 0.44 UQI : 0.40

"/
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Metriques de qualite

SSIM:;

Z Wang, A Bovik, H. Sheikh, E. Simoncelli Image Quality Assessment: From Error
Visibility to Structural Similarity, IEEE TIP, 13(4), 2004

/
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Metriques de qualite

SSIM:;

2u.-u, +C 20 0, +C 20, +C
0(f,8)=—""5— cof.8)=—5— s(f.9)=—=—
wy +u, +C o, +0,+C, o,0,+C,

w,,u, :moyennedesimages f et g

O ,,0, :¢cart—typedesimages f et g

L] 1
O ., :covariance — E (f - u Xg —u )
/4 nm 4 i f ij g

C,,C,,C, : constantes

SS]M(fag) =l(f,g)ac(f,g)f3s(f’g)\(

Z Wang, A Bovik, H. Sheikh, E. Simoncelli Image Quality Assessment: From Error
\ Visibility to Structural Similarity, IEEE TIP, 13(4), 2004

/




Metriques de qualite

Tout comme UQI, 1l est préférable d’utiliser une version locale de SSIM, une
version qu’ils nomment mean structural similarity MSSIM

MSSIM (f,g) = %E SSIM (f,,g,)

ou

f;-&,: estle contenu de I'image a I’intérieur de la j-eme petite fenétre (par exemple 11x11)

Z Wang, A Bovik, H. Sheikh, E. Simoncelli Image Quality Assessment: From Error
Visibility to Structural Similarity, IEEE TIP, 13(4), 2004 /
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Artéfacts de
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Autre example (images dégradées ayant la méme MSE)

N\
A

MSE=225, MSSIM=0.949 MSE=225, MSSIM=O.989

»
. a 3
r' . \’, \\ ~*' o .
e )
& s

MSE=225, MSSIM=0.671 MSE=225, MSSIM=0.688 SE=225, SSIM=O.723




4. Operations inter-images
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Opcrations inter-images.

Détection de mouvement

Le but? différencier (ou segmenter) les zones mobiles des zones immobiles dans
une séquence videéo.
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Opcrations inter-images.

Détection de mouvement

Le but? différencier (ou segmenter) les zones mobiles des zones immobiles dans
une séquence videéo.

Ce dont nous disposons:

une séquence vidéo I constituce de N
images, une a chaque temps ¢. I

On appelle souvent « frame » une image
dans une séquence video.

Ce qu’il nous faut estimer:

un champ d’étiquettes Xt pour chaque
frame It En général, Xr est une image
binaire de la méme taille que Iz
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Opcrations inter-images.

Détection de mouvement

Le but? différencier (ou segmenter) les zones mobiles des zones immobiles dans
une séquence videéo.

Deux grandes familles de méthodes :
(1) celles avec cameéra fixe;
(2) celles avec caméra mobile. - Sujet de cours avances

Les méthodes avec caméra fixe sont tres utiles pour les applications de surveillance

et de contrdle de la qualité (sur une ligne de montage par exemple). Pour ces méthodes,
on considere souvent que:

I, = B + Objets en mouvement | ou B est un image du fond (background)

On émet souvent deux hypotheses:

(1) les objets en mouvement ont une couleur différente des pixels du fond.
(2) I'tmage du fond est toujours la méme, du début a la fin.
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Opcrations inter-images.

Détection de mouvement

En admettant pour vraies ces hypotheses, on peut estimer X par une simple opération
de soustraction de fond :

X,(x,y)=Seuil(|l,(x,y)-B(x,y))
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Opcrations inter-images.

Détection de mouvement

\
Pixel « (1,)) »
Ii(i,j) Distribution temporelle du B(i) Distribution temporelle du
' Pixel « (1,)) » 1 Pixel « (i,j) » dans le fond

180 180

] e — C—D

«

/ Teﬁlps Terhps
Le sombre picton passe devant (1,))
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Opcrations inter-images.

Détection de mouvement

I(i,j) Distribution temporelle du B(ij) Distribution temporelle du

180

13

Pixel « (1,)) »

180

Pixel « (i,)) » dans le fond

------------------- S

/‘ Teﬁlps
Le sombre picton passe devant (1,))

7,(4)-B(A) Distribution temporelle de
7,(4)~B(4)
167
Seuil + -

Terhps
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Opcrations inter-images.

Détection de mouvement

X,(x,y)=Seuil(|l,(x,y)-B(x,y))

Bien sir, la méthode de soustraction de fond fonctionne bien ssi :

B est connu;

B est constant dans le temps;

I, n’est pas une séquence « trop bruitée »;

les objets du fond sont immobiles;

la caméra est parfaitement fixe;

les objets en mouvement ont une couleur différente du fond.

AN
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Opcrations inter-images.

Détection de mouvement

1. Que faire s1 B est inconnu? Il faut I’estimer!

Pixel « (1,)) »
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Opcrations inter-images.

Détection de mouvement

1. Que faire s1 B est inconnu? Il faut I’estimer!

N Distribution temporelle du
It(i,) Pixel « (i,j) »

\/\/\/\/

Temps

Pixel « (1,)) »
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Opcrations inter-images.

Détection de mouvement

1. Que faire s1 B est inconnu? Il faut I’estimer!

N Distribution temporelle du Pixel « (1.1) »
It(i,j) Pixel « (i,j) » (.0)

B(ij) moyen eg————  —  —~V0/

; N—] Tem'ps
B(i,j)= Wzli(i,j)

Pour estimer B a partir d’un séquence video, 1l faut, pour chaque pixel de la séquence,
distinguer la couleur/I’intensit¢ du fond de la couleur des objets en mouvement
et des erreurs de transmission. Pour ce faire, on peut

1.  Prendre la moyenne
2.  Prendre la médiane.

N v
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Opcrations inter-images.

Détection de mouvement

1. Que faire s1 B est inconnu? Il faut I’estimer!

Pixel « (1,)) »
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Opcrations inter-images.

Détection de mouvement

1. Que faire s1 B est inconnu? Il faut I’estimer!

N Distribution temporelle du
It(i,) Pixel « (i,j) »

Voiture claire 1 ———— .

= 7/\/

Voitures sombres

Temps

.....

|/

Pixel « (1,)) »

Bruit causé par une

erreur de transmission.

81
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Opcrations inter-images.

Détection de mouvement

1. Que faire s1 B est inconnu? Il faut I’estimer!

Y

N Distribution temporelle du Pixel « (1.1) »
1t(i,j) Pixel « (i,j) » ( ,J)

Voiture claire | —— __ Bruit cause par une
erreur de transmission.

B(i,j) moyen ===

\/\ \4/ \A/ Tem:ps
/ \

Voitures sombres

] N-1

Moyenne: B(i,j)=F21,-(i,j)

ATTENTION : la moyenne ne fonctionne que si les observations /;(i, j ) contiennent des valeurs
se distribuant de fagon gaussienne autour d’une valeur moyenne. Cette méthode est donc

\ trés sensible aux valeurs extrémes (les outliers). 82 /
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Opcrations inter-images.

Détection de mouvement

1. Que faire s1 B est inconnu? Il faut I’estimer!

|/

N Distribution temporelle du Pixel « (1.1) »
It(i,j) Pixel « (i) » (19)

Voiture claire | —— ™ . Bruit causc par une

erreur de transmission.
B(i,j) médian ==

\/\ \4/ \A/ Tem:ps
/ \

Voitures sombres

Médiane: |B(i, j)=médiane(Z, (i, j),1,(i, j ) I(i, ] ) y_;(i,7))

N "
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Opcrations inter-images.

Détection de mouvement

1. Que faire s1 B est inconnu? Il faut I’estimer!

Y

N Distribution temporelle du Pixel « (1.1) »
I1(i,j) Pixel « (i,j) » ( ) )
Voiture claire — | —— . Bruit causc par une
erreur de transmission.
B(i,j) médian ==
— __ \A/

\ / \ Temps

Voitures sombres

Médiane: |B(i, j)=médiane(Z, (i, j),1,(i, j ) I(i, ] ) y_;(i,7))

ATTENTION : la médiane est robuste aux outliers a condition qu’ils ne correspondent pas a

\ plus de 50% des observations. 83 /
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Opc¢rations inter-images.

Détection de mouvement

Méediane
temporelle

PHO440 (27 fps 7.46 Mhb/s) 2007-07-13 15:11:11.38

Mediane
temporelle

. - v faat o
O S 5 dot 2~ ..

East (30 fps 10.94 Mh/s) 2007-07-16 17:20:37.15
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Opcrations inter-images.

Détection de mouvement

e N\ A G}
"\.\i_:‘“\‘“ _— J

: : ’ PV S ——
2. Que faire s1 B n’est pas constant dans le temps? A 14100 il faisait A 14h15 un gros
beau. nuage a obstru¢ le ciel.
N Distribution temporelle du
B(i) pixel « (i,j) » dans le background
_— Unnuage a.momentanement
obstru¢ le ciel.
14h00 14h15 14h25 Temps

Dans ce cas, 1l faut mettre a jour B a chaque temps t

Bt(laf) = (1 _a)Bt—l(iaj) +Odt(iaj)
ou a est la « forgetting constant », généralement beaucoup plus petite que 1.
Afin d’éviter qu’un objet lent ne soit associ€ au fond, on peut faire ceci

B,(i,j)=(-a)B_ (i, )+, (i,j) V(G j) tq.X (i))=0
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Détection de mouvement

3. Que faire si [ est bruitée? ”’3

N Distribution temporelle du O
1(ij) | pixel « (i,j) »

W Pixel « (1,)) »

LA ) Le camion passe devant (i,]
S — ' "

as

Temps

Le bruit peut causer de nombreux faux positifs
et faux negatifs. Que pouvons-nous faire?

1- Puisque les faux positifs/négatifs forment un bruit
impulsionnel, on peut utiliser un filtre médian.

2- On peut modg¢liser le fond de fagon plus
intelligente, c-a-d. de facon probabiliste.




4 N

Opcrations inter-images.

Détection de mouvement

3. Que faire si 7 est bruitée?

N Distribution temporelle du
1(ij) | pixel « (i,j) » avant que le camion ne passe

Valeur moyenne, 190 -/

Temps
Histogramme des valeurs du
P((ij) » pixel « (i,j) » avant que le camion passe | Si ]le bruit est non corr¢lé dans le temps et de
LT moyenne nulle, généralement I’histogramme

des valeurs se distribuera suivant une
« gaussienne ».

- Gaussienne centrée sur 190 et d’€cart type o.

190

N "
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Opcrations inter-images.

Détection de mouvement

3. Que faire si 7 est bruitée?

Au lieu de modéliser le pixel (1,)) par la valeur 190, on le modélisera par une
gaussienne centrée sur 190 et d’€cart type o. Pour estimer la moyenne et 1’écart-
type de la gaussienne associée au pixel (1,)), on a besoin d’une série de N frames
sans mouvement, ¢’est-a-dire ne contenant que le fond. Dans ce cas,

g N
Weij) =ﬁzlr(i’j)
=1

N-1
I
2 .o
o’ . =— I,j)—W;
(i) N_];,(/r( J)= b))

Une fois Wi,j) €t O; ; jestimés, la détection se fait a 1’aide de 1’opération suivante:

Xi(1,])=Seuil(F, (1,(i,]))

= Seuil( : _

\ \/ﬂo 88 /
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Opcrations inter-images.

Détection de mouvement

les objets en mouvement ont la méme couleur que le fond

C’est ce qu’on appelle un probleme de « camouflage ». Malheureusement,

il y a trés peu de choses que 1’on puisse faire avec une méthode par soustraction
de fond. C’est une des limites inhérentes a cette approche. Toutefois, dans
certains cas, on jouit d’une connaissance a priori du probleme que I’on peut
exploiter a posteriori.

Par exemple: Il me faut détecter des camions en mouvement. Puisque je sais qu’un
camion est un objet plein, je peux remplir les trous (c-a-d €liminer les
faux négatifs) a I’intérieur du vehicule une fois la détection faite.




[ es faits saillants

1.  Correction gamma g(x, y) = (f(x, y))Y
2.  Transformations lin€aires/non lin€aires

3.  Histogramme

4.  Egalisation d histogramme

5. Warping & Interpolation

7. Bruit et rapport signal sur bruit

6. De¢tection de mouvement
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