
IMN-359
Décomposition/Reconstruction

en ondelettes 1D

Wednesday, November 24, 2010

3.2. 1D W A V E L E T P R O C E SSI N G 27

% Low/High pass filtering followed by sub−sampling.
a = s u b s amp l i n g (c c o n v (f , h)) ;
d = s u b s amp l i n g (c c o n v (f , g)) ;
% Up−sampling followed by filtering.
f 1 = c c o n v (u p s amp l i n g (a) , r e v e r s e (h)) + c c o n v (u p s amp l i n g (d) , r e v e r s e (g)) ;
% Check that we really recover the same signal.
d i s p (s t r c a t (([' E r r o r | f − f 1 | / | f | = ' n um2 s t r (n o r m (f − f 1) / n o r m (f))]))) ;

Matlab code 2: Filtering followed by sub-sampling: forward and backward. Input: signal f,
outputs coarse and detail coe cients a, d.

Figure 3.6: Forward filter bank decomposition.

Fast wavelet transform algorithm. The fast wavelet transform (FWT) applies iteratively the
steps (3.14) and (3.15), starting from j = J where aJ = f is known. The FWT operates as follow:

Input: signal f ∈ CN .
Initialization: aJ = f .
For j = J , . . . , j0 − 1.

aj+1 = (aj ! h̃) ↓ 2
dj+1 = (aj ! g̃) ↓ 2

Output: the coefficients {dj}j0!j<J ∪ {aj0}.
Figure 3.7 shows the process of extracting iteratively the wavelet coefficients. Figure 3.8 shows

an example of computation, where at each iteration, the coefficients of aj and dj are added to the
left of the output vector. The code 3 implements this forward transform.

Figure 3.7: Pyramid computation of the coe cients.

The computational complexity of the FWT applied to a vector of N entries is
0∑

j= − log2(N)

2j N (|h| + |g|) = O(N × (|h| + |g|))

operations. It thus has a linear complexity with respect to N , which is faster than the FFT
algorithm that has O(N log(N)) complexity. Furthermore, its complexity also increases with the
size of the filters.

Wednesday, November 24, 2010

3.2. 1D WAVELET PROCESSING 27

% Low/High pass filtering followed by sub−sampling.
a = subsampling(cconv(f,h));
d = subsampling(cconv(f,g));
% Up−sampling followed by filtering.
f1 = cconv(upsampling(a),reverse(h)) + cconv(upsampling(d),reverse(g));
% Check that we really recover the same signal.
disp(strcat((['Error |f−f1|/|f| = ' num2str(norm(f−f1)/norm(f))])));

Matlab code 2: Filtering followed by sub-sampling: forward and backward. Input: signal f,
outputs coarse and detail coefficients a, d.

Figure 3.6: Forward filter bank decomposition.

Fast wavelet transform algorithm. The fast wavelet transform (FWT) applies iteratively the
steps (3.14) and (3.15), starting from j = J where aJ = f is known. The FWT operates as follow:

Input: signal f ∈ CN .
Initialization: aJ = f .
For j = J, . . . , j0 − 1.

aj+1 = (aj ! h̃) ↓ 2
dj+1 = (aj ! g̃) ↓ 2

Output: the coefficients {dj}j0!j<J ∪ {aj0}.
Figure 3.7 shows the process of extracting iteratively the wavelet coefficients. Figure 3.8 shows

an example of computation, where at each iteration, the coefficients of aj and dj are added to the
left of the output vector. The code 3 implements this forward transform.

Figure 3.7: Pyramid computation of the coefficients.

The computational complexity of the FWT applied to a vector of N entries is
0∑

j=− log2(N)

2jN(|h| + |g|) = O(N × (|h| + |g|))

operations. It thus has a linear complexity with respect to N , which is faster than the FFT
algorithm that has O(N log(N)) complexity. Furthermore, its complexity also increases with the
size of the filters.

Wednesday, November 24, 2010

28 C H A P T E R 3. W A V E L E T P R O C E SSI N G

Jma x = l o g 2 (n)−1 ; Jm i n = 0 ; f w = f ;
f o r j = Jma x :−1 : Jm i n

Co a r s e = s u b s amp l i n g (c c o n v (f w (1 : 2 ^ (j + 1)) , h)) ;
De t a i l = s u b s amp l i n g (c c o n v (f w (1 : 2 ^ (j + 1)) , g)) ;
f w (1 : 2 ^ (j + 1)) = c a t (1 , Co a r s e , De t a i l) ;

e nd

M a t la b co de 3: FWT algorithm, the input is f and the output is fw that stores all wavelet
coefficients.

0

0.2

0.4

0.6

0.8

1

0

0.5

1

0

0.5

1

1.5

0

0.5

1

1.5

2

F igure 3.8: Wavelet decomposition algorithm.

H aa r R efi ne m en t For the H aar wavelets, one has

φj,n =
1√
2
(φj−1,2n + φj−1,2n+1),

ψj,n =
1√
2
(φj−1,2n − φj−1,2n+1).

T his corresponds to the filters

h = [. . . , 0, h[0] =
1√
2
,

1√
2
, 0, . . .],

g = [. . . , 0, h[0] =
1√
2
, − 1√

2
, 0, . . .].

T he H aar wavelet transform algorithm thus processes by iterating averaging and differences:
I n p u t : signal f ∈ CN .
I n i t ializa t ion: aJ = f .
For j = J, . . . , j0 − 1.

aj+1[n] =
1√
2
(aj−1[2n] + aj−1[2n + 1]),

dj+1[n] =
1√
2
(aj−1[2n]− aj−1[2n + 1]).

O u t p u t : the coefficients {dj}j0!j<J ∪ {aj0}.

3.2.3 Inverse Wavelet Transform
A forward elementary step

aj−1 ∈ R21−j

%−→ (aj , dj) ∈ R2−j

× R2−j

is an orthogonal mapping
||aj−1||2 = ||aj ||2 + ||dj ||2.

T he backward elementary step

(aj , dj) ∈ R2−j

× R2−j

%−→ aj−1 ∈ R21−j

Wednesday, November 24, 2010

3.2. 1D W A V E L E T P R O C E SSI N G 25

! ! "#

! !

! $"#

$

$"#

!

! "#

Wavelet coe cients {dj [n] } j,n

0

0.2

0.4

0.6

0.8

1

!!"#

!!"$

!

!"$

!"#

Signal f d−7[n]

!!"#

!!"$

!

!"$

!"#

!!"#

!

!"#

d−6[n] d−5[n]

F igure 3.5: Wavelet coefficients. Top row: all the coefficients. Bottoms rows: zoom on the different
scales

To identify the discrete wavelet transform of f with the continuous transform of f0 , we assume
a consistency of the sampling with the scaling function

∀ 0 ! n < N, f [n] = aJ [n] =
1

2J/2

∫
f0(t)φ(t/2J − n)dt = 〈f0, φJ,n〉 (3.9)

U nder this hypothesis, the detail coe cients dj of f0 are computed from the discrete signal f using
a fast algorithm.

T his hypothesis is questionable, since the sensor impulse response h in (1.1) is given by the hard-
ware, and is likely to di ers from φ. I t is possible to account for this imperfect match by modifying
the values of f [n] prior to computing the wavelet coe cients, but in practice, the approximation
f [n] ≈ 〈f0, φJ,n〉 is su cient .

Discrete signals and discrete wavelets. T he wavelet coe cients depend linearly on both the
continuous and the discrete signals, and can thus be writ ten as

∀J < j ! 0, ∀ 0 ! n < 2−j , dj [n] = 〈f0, ψj,n〉 = 〈f, ψ̄j,n〉 (3.10)

where ψj,n are the continuous wavelet atoms (3.1) and ψ̄j,n ∈ CN are discrete wavelet vectors
defined implicit ly using this relation. T his defines a discrete wavelet basis of CN

{ ψ̄j,n } J<j!0, 0!n<2−j ∪ { φ̄0,0 } (3.11)

where by convention φ̄0,0 = 1/
√

N is the constant vector.
For large N , these discrete atoms resemble their continuous counterparts, but since they are

defined on a discrete grid, they cannot be generated by dilation of a single mother wavelet . T hey
however satisfy a translation relationship on the discrete grid

∀ 0 ! k < N, ψ̄j,n[k] = ψ̄j,0[k − 2jn].

3.2.2 Forward Wavelet Transform
For now we assume that the wavelet function ψ and scaling function φ are given, and we derive

a fast iterative algorihtm. T his section shows how to apply this algorithm without knowing in
closed form these functions.

Wednesday, November 24, 2010

Transformée inverse

3.3. 2D WAVELET PROCESSING 29

=⇒

Figure 3.9: Wavelet inversion in matrix format.

is thus the transposed of the forward mapping. This is shown using matrix notations in Figure 3.9.
The transpose of sub-sampling is the up-sampling operator, defined by

(a ↑ 2)[n] =
{

a[k] if n = 2k,
0 if n = 2k + 1.

The transpose of filtering by h̃ is filtering by the reverse filter h. One thus has

aj−1 = (aj ↑ 2) ! h + (dj ↑ 2) ! g.

The inverse Fast wavelet transform iteratively applies this elementary step
Input: {dj}j0!j<J ∪ {aj0}.
For j = j0, . . . , J + 1.

aj−1 = (aj ↑ 2) ! h + (dj ↑ 2) ! g.

Output: f = aJ .
This process is shown using a block diagram in Figure 3.10, which is the inverse of the block
diagram 3.6. The code 4 implements this inverse transform.

Figure 3.10: Backward filterbank recomposition algorithm.

f1 = fw;
for j=Jmin:Jmax

Coarse = f1(1:2^j);
Detail = f1(2^j+1:2^(j+1));
Coarse = cconv(upsampling(Coarse,1),reverse(h),1);
Detail = cconv(upsampling(Detail,1),reverse(g),1);
f1(1:2^(j+1)) = Coarse + Detail;

end

Matlab code 4: Inverse FWT algorithm, the input is fw that stores all wavelet coefficients and
the output is f1.

3.3 2D Wavelet Processing
There is two ways to extends a 1D wavelet basis into a 2D basis. The simplest way, detailed in

Section 3.3.2, computes tensor products of wavelet functions. A more complicated way, detailed
in Section 3.3.3, makes use of three different 2D mother wavelet functions, which enables wavelet
atoms with a square support.

Wednesday, November 24, 2010

3.3. 2D W A V E L E T P R O C E SSI N G 29

=

F igure 3.9: Wavelet inversion in matrix format.

is thus the transposed of the forward mapping. T his is shown using matrix notations in F igure 3.9.
T he transpose of sub-sampling is the up-sampling operator, defined by

(a 2)[n] =
{

a[k] if n = 2k ,
0 if n = 2k + 1.

T he transpose of filtering by h̃ is filtering by the reverse filter h. O ne thus has

aj−1 = (aj 2) ! h + (dj 2) ! g .

T he inverse Fast wavelet transform iteratively applies this elementary step
Input: {dj}j0!j<J {aj0}.
For j = j0 , . . . , J + 1.

aj−1 = (aj 2) ! h + (dj 2) ! g .

Output: f = aJ .
T his process is shown using a block diagram in F igure 3.10, which is the inverse of the block
diagram 3.6. T he code 4 implements this inverse transform.

F igure 3.10: Backward filterbank recomposition algorithm.

f1 = fw;
for j=Jmin:Jmax

Coarse = f1(1:2^j);
Detail = f1(2^j+1:2^(j+1));
Coarse = cconv(upsampling(Coarse,1),reverse(h),1);
Detail = cconv(upsampling(Detail,1),reverse(g),1);
f1(1:2^(j+1)) = Coarse + Detail;

end

Matlab code 4: Inverse FWT algorithm, the input is fw that stores all wavelet coefficients and
the output is f1.

3.3 2D Wavelet Processing
T here is two ways to ex tends a 1D wavelet basis into a 2D basis. T he simplest way, detailed in

Section 3.3.2, computes tensor products of wavelet functions. A more complicated way, detailed
in Section 3.3.3, makes use of three different 2D mother wavelet functions, which enables wavelet
atoms with a square support .

Wednesday, November 24, 2010

Décomposition en ondelettes
de Lemarié

 2−9

 2−8

 2−7

 2−6

 2−5

Approximation

0 0.2 0.4 0.6 0.8 1
−20
0
20
40

t

f(t)

Fig. 7.7. A Wavelet Tour of Signal Processing, 3rd ed. Wavelet coefficients dj [n] = 〈f,ψj,n〉 calculated at scales 2j with the cubic spline
wavelet. Each up or down Dirac gives the amplitude of a positive or negative wavelet coefficient. At the top is the remaining coarse signal

approximation aJ [n] = 〈f,φJ,n〉 for J = −5.

Coefficients d’ondelettes dj[n]

Wednesday, November 24, 2010

Démo reconstruction

FWT

IFWT

Wednesday, November 24, 2010

