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L2 error and SNR are not good measures of quality.

�⇥ Pereceptual metric, visual inspection.
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30 CHAPTER 3. WAVELET PROCESSING

3.3.1 2D Multiresolutions
Separable multiresolutions. A 2D separable multiresolution analysis of L2(R2) is obtained
from a 1D muliresolution {Vj}j of L2(R) as follow

Vj ⇤ Vj = {f(x1)g(x2) \ f ⌅ Vj , g ⌅ Vj} .

For each j ⌅ Z, this tensor product approximation space is generated by tensor product of scaling
functions

Vj ⇤ Vj = Span{�C
j,n}n⇥Z2 .

where
�C

j,n(x) =
1
2j

�C

�
x � 2jn

2j

⇥
and �C(x) = �(x1)�(x2).

This construction extends to multiresolutions of L2([0, 1]2) by restricting the indices to

j � 0, and 0 � n1, n2 < 2�j .

2D consistent discretization. An analog image f0 ⌅ L2([0, 1]2) is sampled on a discrete grid
{(n1, n2)2J}N0�1

n=0 of N = N0 ⇥ N0 pixels, where N0 = 2�J .
Similarly to the 1D setting (3.9), we assume a consistency between the sampling scheme and

the scaling function, such that for an image f ⌅ CN of N pixels

⇧ 0 � n1, n2 < N0, f [n] = aJ [n] = �f0, �C
J,n . (3.16)

Wavelet coe⇥cients of f0 can then be computed from the discrete signal f ⌅ CN .

Haar 2D multiresolution. For the Haar multiresolution, one obtains 2D piecewise-constant
Haar approximation. A function of Vj ⇤Vj is constant on squares of size 2j ⇥2j . Figure 3.11 shows
an example of projection of an image onto these 2D Haar approximation spaces.

Figure 3.11: 2D Haar approximation.

3.3.2 Anisotropic 2D Wavelets
Anisotropic basis. A separable (anisotropic) wavelet basis is obtained from a mother wavelet
function ⇥ as follow

⇥j1,j2,n1,n2(x) = ⇥j1,n1(x1)⇥j2,n2(x2).
It corresponds to an orthogonal basis of L2(R2) or L2([0, 1]2) with periodic boundary conditions.

Anisotropic wavelet coe�cients. Anisotropic wavelet coe⇥cients of f0 ⌅ L2([0, 1]2) are com-
puted from f ⌅ CN as

⇧J < j2, j2 � 0, ⇧ 0 � n1 < 2�j1 , ⇧ 0 � n2 < 2�j2 , �⇥j1,j2,n1,n2 , f0 = �⇥̄j1,j2,n1,n2 , f (3.17)

where ⇥̄j1,j2,n1,n2 generates a 2D discrete anisotropic wavelet basis of CN , that is also a tensorial
basis

⇥̄j1,j2,n1,n2 [x] = ⇥̄j1,n1 [x1]⇥̄j2,n2 [x2],
where ⇥̄j1,n1 is a 1D discrete wavelet vector, defined in (3.10).
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Joyeux Noel!


